Learning to Make Inferences in a Semantic Parsing Task
نویسندگان
چکیده
We introduce a new approach to training a semantic parser that uses textual entailment judgements as supervision. These judgements are based on high-level inferences about whether the meaning of one sentence follows from another. When applied to an existing semantic parsing task, they prove to be a useful tool for revealing semantic distinctions and background knowledge not captured in the target representations. This information is used to improve the quality of the semantic representations being learned and to acquire generic knowledge for reasoning. Experiments are done on the benchmark Sportscaster corpus (Chen and Mooney, 2008), and a novel RTE-inspired inference dataset is introduced. On this new dataset our method strongly outperforms several strong baselines. Separately, we obtain state-of-the-art results on the original Sportscaster semantic parsing task.
منابع مشابه
برچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملبرچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملThe Effect of Self-Regulation on Improving EFL Readers’ Ability to Make Within-Text Inferences
Self-regulation is the ability to regulate one’s cognition, behavior, actions, and motivation strategically and autonomously in order to achieve self-set goals including the learning of academic skills and knowledge. Accordingly, self-regulated learning involves self-generated and systematic thoughts and behaviors with the aim of attaining learning goals. With that in mind, this study aimed to ...
متن کاملTransfer Learning for Neural Semantic Parsing
The goal of semantic parsing is to map natural language to a machine interpretable meaning representation language (MRL). One of the constraints that limits full exploration of deep learning technologies for semantic parsing is the lack of sufficient annotation training data. In this paper, we propose using sequence-to-sequence in a multi-task setup for semantic parsing with a focus on transfer...
متن کاملLearning Plausible Inferences from Semantic Web Knowledge by Combining Analogical Generalization with Structured Logistic Regression
Fast and efficient learning over large bodies of commonsense knowledge is a key requirement for cognitive systems. Semantic web knowledge bases provide an important new resource of ground facts from which plausible inferences can be learned. This paper applies structured logistic regression with analogical generalization (SLogAn) to make use of structural as well as statistical information to a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- TACL
دوره 4 شماره
صفحات -
تاریخ انتشار 2016